
The Destructor and the Assignment Operator
Lecture 8

Sections 7.7, 11.6

Robb T. Koether

Hampden-Sydney College

Fri, Feb 3, 2017

Robb T. Koether (Hampden-Sydney College) The Destructor and the Assignment Operator Fri, Feb 3, 2017 1 / 33



1 The Destructor
The Automatic Destructor
The makeEmpty() Function

2 The this Pointer

3 The Assignment Operator
The Automatic Assignment Operator

4 Assignment

Robb T. Koether (Hampden-Sydney College) The Destructor and the Assignment Operator Fri, Feb 3, 2017 2 / 33



Outline

1 The Destructor
The Automatic Destructor
The makeEmpty() Function

2 The this Pointer

3 The Assignment Operator
The Automatic Assignment Operator

4 Assignment

Robb T. Koether (Hampden-Sydney College) The Destructor and the Assignment Operator Fri, Feb 3, 2017 3 / 33



The Destructor

The Destructor
Type::~Type(); // Prototype;

The destructor destroys an object, i.e., it deallocates the memory
used by the object.

The destructor should never be invoked explicitly.

Robb T. Koether (Hampden-Sydney College) The Destructor and the Assignment Operator Fri, Feb 3, 2017 4 / 33



The Destructor

The Destructor
Type::~Type(); // Prototype;

The destructor destroys an object, i.e., it deallocates the memory
used by the object.
The destructor should never be invoked explicitly.

Robb T. Koether (Hampden-Sydney College) The Destructor and the Assignment Operator Fri, Feb 3, 2017 4 / 33



Purpose of the Destructor

The destructor is used to destroy an object when it passes out of
scope.

A global variable passes out of scope when the program terminates.
A variable that is local to a function passes out of scope when
execution returns from the function.
A variable that is local to a block {} passes out of scope when
execution leaves that block.
A volatile object passes out of scope when the evaluation of the
expression in which it occurs is completed.

In general, the scope of an object is determined by where the
object is created. When execution leaves that environment, the
object is destroyed.

Robb T. Koether (Hampden-Sydney College) The Destructor and the Assignment Operator Fri, Feb 3, 2017 5 / 33



Vectr Destructor

Example (Vectr Destructor)
˜Vectr()
{

delete [] m_element;
return;

}

Robb T. Koether (Hampden-Sydney College) The Destructor and the Assignment Operator Fri, Feb 3, 2017 6 / 33



Purposes of the Default Constructor

The Destructor
int main()
{

Vectr v(5, 123);
{

Vectr u = 5*v;
}
return 0;

}

How many vectors are constructed by this program?
When are they destroyed?

Robb T. Koether (Hampden-Sydney College) The Destructor and the Assignment Operator Fri, Feb 3, 2017 7 / 33



Purposes of the Default Constructor

The Function operator*()
Vectr operator*(double s, const Vectr& v)
{
return v.scalarMultiply(s);
}

Vectr Vectr::scalarMultiply(double s) const
{

Vectr v(m_size);
for (int i = 0; i < m_size; i++)

v.m_element[i] = s * m_element[i];
return v;

}

How many vectors are constructed and destroyed in this example?

Robb T. Koether (Hampden-Sydney College) The Destructor and the Assignment Operator Fri, Feb 3, 2017 8 / 33



Outline

1 The Destructor
The Automatic Destructor
The makeEmpty() Function

2 The this Pointer

3 The Assignment Operator
The Automatic Assignment Operator

4 Assignment

Robb T. Koether (Hampden-Sydney College) The Destructor and the Assignment Operator Fri, Feb 3, 2017 9 / 33



The Automatic Destructor

The automatic destructor
Invokes each data member’s destructor.
Deallocates the memory used by the data members.

The automatic destructor does not deallocate memory that the
data members point to.
The destructor for a pointer deallocates only the pointer itself.
In other words, if a data member is a pointer, then the automatic
destructor will probably create a memory leak.

Robb T. Koether (Hampden-Sydney College) The Destructor and the Assignment Operator Fri, Feb 3, 2017 10 / 33



Outline

1 The Destructor
The Automatic Destructor
The makeEmpty() Function

2 The this Pointer

3 The Assignment Operator
The Automatic Assignment Operator

4 Assignment

Robb T. Koether (Hampden-Sydney College) The Destructor and the Assignment Operator Fri, Feb 3, 2017 11 / 33



The makeEmpty() Function

The makeEmpty() Function
void makeEmpty()
{
// Deallocate all memory allocated to the object
// Return the object to the "empty" state or
// the default state
}

Just as we write a makeCopy() function to facilitate the copy
constructor, we may write a makeEmpty() function to facilitate
the destructor.

Robb T. Koether (Hampden-Sydney College) The Destructor and the Assignment Operator Fri, Feb 3, 2017 12 / 33



The Destructor

The Destructor
Type::~Type()
{

makeEmpty();
}

Robb T. Koether (Hampden-Sydney College) The Destructor and the Assignment Operator Fri, Feb 3, 2017 13 / 33



makeEmpty()

Example (makeEmpty())
void makeEmpty()
{

m_size = 0;
delete [] m_element;
m_element = NULL;
return;

}

˜Vectr()
{

makeEmpty();
return;

}

Robb T. Koether (Hampden-Sydney College) The Destructor and the Assignment Operator Fri, Feb 3, 2017 14 / 33



Outline

1 The Destructor
The Automatic Destructor
The makeEmpty() Function

2 The this Pointer

3 The Assignment Operator
The Automatic Assignment Operator

4 Assignment

Robb T. Koether (Hampden-Sydney College) The Destructor and the Assignment Operator Fri, Feb 3, 2017 15 / 33



The this Pointer

Every (non-static) member function has a hidden parameter
named this.
this is always the first parameter in such a function.
this is a constant pointer to the object that invoked the member
function.

Type* const this

this provides us with a name for the invoking object, i.e., *this.

Robb T. Koether (Hampden-Sydney College) The Destructor and the Assignment Operator Fri, Feb 3, 2017 16 / 33



The this Pointer

When we write the prototype of a member function as

Apparent Prototype
Type::func(params);

the actual prototype is

Actual Prototype
Type::func(Type* const this, params);

Robb T. Koether (Hampden-Sydney College) The Destructor and the Assignment Operator Fri, Feb 3, 2017 17 / 33



The this Pointer

Furthermore, when we create a constant member function

Apparent Prototype
Type::func(params) const;

the actual prototype is

Actual Prototype
Type::func(Type const* const this, params);

In this case, this is a constant pointer to a constant object.

Robb T. Koether (Hampden-Sydney College) The Destructor and the Assignment Operator Fri, Feb 3, 2017 18 / 33



Usage of the this Pointer

Inside a member function, we refer to a data member by its name,
e.g. m_size.
It is interpreted as this->m_size.

Robb T. Koether (Hampden-Sydney College) The Destructor and the Assignment Operator Fri, Feb 3, 2017 19 / 33



Usage of the this Pointer

Inside a member function, we invoke another member function of
the same class by the function’s name, e.g.,
scalarMultiply(5).
It is interpreted as this->scalarMultiply(5).

Robb T. Koether (Hampden-Sydney College) The Destructor and the Assignment Operator Fri, Feb 3, 2017 20 / 33



Outline

1 The Destructor
The Automatic Destructor
The makeEmpty() Function

2 The this Pointer

3 The Assignment Operator
The Automatic Assignment Operator

4 Assignment

Robb T. Koether (Hampden-Sydney College) The Destructor and the Assignment Operator Fri, Feb 3, 2017 21 / 33



The Assignment Operator

The Assignment Operator Prototype
Type& Type::operator=(const Type&);

The Assignment Operator Usage
ObjectA = ObjectB;

The assignment operator assigns to an existing object the value of
another existing object of the same type.
The assignment operator must be a member function.
It can be invoked only through the operator =.

Robb T. Koether (Hampden-Sydney College) The Destructor and the Assignment Operator Fri, Feb 3, 2017 22 / 33



Form of the Function operator=()

The Assignment Operator
Type& Type::operator=(const Type& value)
{

if (this != &value)
{

// Clear out the old value
// Assign the new value

}
return *this;

}

Robb T. Koether (Hampden-Sydney College) The Destructor and the Assignment Operator Fri, Feb 3, 2017 23 / 33



Form of the Function operator=()

The makeEmpty() and makeCopy() Functions
void makeEmpty();

void makeCopy(const Type& value);

makeEmpty() clears out the old value of the object.
makeCopy() assigns the new value to the object.
It is convenient write these two member functions and then use
them in the copy constructor, the destructor, and the assignment
operator (and the input() function).

Robb T. Koether (Hampden-Sydney College) The Destructor and the Assignment Operator Fri, Feb 3, 2017 24 / 33



The Assignment Operator

The Assignment Operator
Type& Type::operator=(const Type& value)
{

if (this != &value)
{

makeEmpty();
makeCopy(value);

}
return *this;

}

Robb T. Koether (Hampden-Sydney College) The Destructor and the Assignment Operator Fri, Feb 3, 2017 25 / 33



makeEmpty()

Example (makeEmpty())
Vectr& operator=(const Vectr& v)
{

if (this != &v)
{

makeEmpty();
makeCopy(v);

}
return *this;

}

Robb T. Koether (Hampden-Sydney College) The Destructor and the Assignment Operator Fri, Feb 3, 2017 26 / 33



The input() Function

The input() Function
void Type::input(istream& in)
{

makeEmpty(); // Avoid memory leak
// Read the object
}

Robb T. Koether (Hampden-Sydney College) The Destructor and the Assignment Operator Fri, Feb 3, 2017 27 / 33



Outline

1 The Destructor
The Automatic Destructor
The makeEmpty() Function

2 The this Pointer

3 The Assignment Operator
The Automatic Assignment Operator

4 Assignment

Robb T. Koether (Hampden-Sydney College) The Destructor and the Assignment Operator Fri, Feb 3, 2017 28 / 33



The Automatic Assignment Operator

The automatic assignment operator uses each data member’s
assignment operator to assign values to them from the other
object.

Robb T. Koether (Hampden-Sydney College) The Destructor and the Assignment Operator Fri, Feb 3, 2017 29 / 33



Multiple Assignments

The assignment operator is right-associative.
The statement

a = b = c = d;

is equivalent to
a = (b = (c = d));

Robb T. Koether (Hampden-Sydney College) The Destructor and the Assignment Operator Fri, Feb 3, 2017 30 / 33



Multiple Assignments

What about the statements
((a = b) = c) = d;

and
(a = b) = (c = d);

Are they legal?
If so, what do they do?

Robb T. Koether (Hampden-Sydney College) The Destructor and the Assignment Operator Fri, Feb 3, 2017 31 / 33



Outline

1 The Destructor
The Automatic Destructor
The makeEmpty() Function

2 The this Pointer

3 The Assignment Operator
The Automatic Assignment Operator

4 Assignment

Robb T. Koether (Hampden-Sydney College) The Destructor and the Assignment Operator Fri, Feb 3, 2017 32 / 33



Assignment

Homework
Read Sections 7.7, 11.6, pages 407 - 408, 704 - 710 (8th ed.).

Robb T. Koether (Hampden-Sydney College) The Destructor and the Assignment Operator Fri, Feb 3, 2017 33 / 33


	The Destructor
	The Automatic Destructor
	The makeEmpty() Function

	The this Pointer
	The Assignment Operator
	The Automatic Assignment Operator

	Assignment

